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Abstract
We give an overview of the emerging field of structural genomics, describing

how genomes can be compared in terms of protein structure. As the number of genes in a
genome and the total number of protein folds are both quite limited, these comparisons
take the form of surveys of a finite parts list, similar in respects to demographic censuses.
Fold surveys have many similarities with other whole-genome characterizations, e.g.
analyses of motifs or pathways. However, structure has a number of aspects that make it
particularly suitable for comparing genomes, namely the way it allows for the precise
definition of a basic protein module and the fact that it has a better defined relationship to
sequence similarity than does protein function.  An essential requirement for a structure
survey is a library of folds, which groups the known structures into “fold families.” This
library can be built up automatically using a structure-comparison program, and we
described how important objective statistical measures are for assessing similarities
within the library and between the library and genome sequences. After building the
library, one can use it to count the number of folds in genomes, expressing the results in
the form of Venn diagrams and "top-10" statistics for shared and common folds.
Depending on the counting methodology employed, these statistics can reflect different
aspects of the genome, such as the amount of internal duplication or gene expression.
Previous analyses have shown that the common folds shared between very different
microorganisms - i.e. in different kingdoms - have a remarkably similar structure, being
comprised of repeated strand-helix-strand super-secondary structure units. A major
difficulty with this sort of “fold-counting” is that only a small subset of the structures in a
complete genome are currently known and this subset is prone to sampling bias. One way
of overcoming biases is through structure prediction, which can be applied uniformly and
comprehensively to a whole genome. Various investigators have, in fact, already applied
many of the existing techniques for predicting secondary structure and transmembrane
(TM) helices to the recently sequenced genomes. The results have been consistent:
Microbial genomes have similar fractions of strands and helices even though they have
significantly different amino-acid composition. The fraction of membrane proteins with a
given number of TM-helices falls off rapidly with more TM elements, approximately
according to a Zipf Law. This latter finding indicates that there is no preference for the
highly studied 7-TM proteins in microbial genomes. Continuously updated tables and
further information pertinent to this review is available over the web at
http://bioinfo.mbb.yale.edu/genome.
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Introduction

The Sequencing of Complete Genomes Highlights the Finiteness of Molecular
Biology
In the last three years a number of microbial genomes have been completely

sequenced, generating tremendous interest, popular as well as scientific [1-3]. In
particular, in 1995 the first genome of a free-living organism, the bacteria H. influenzae,
was sequenced by Venter and colleagues, and two years later another landmark was
reached with the publication of the yeast genome,  a significantly more complex genome
of a eukaryote [4, 5].
One of the most important points highlighted by having a complete genome sequence is
the essential finiteness of molecular biology. That is, the complete sequence, while
complex, describes all the parts necessary for microbial life.

A Structural Census, the Connection between Genomes and Structures
Simultaneous with all the progress being made in genomics, there is a tremendous

investment being made in structural biology. This is yielding great returns in the form of
an exponentially increasing number of protein structures. All these structures fall into a
very limited number of folding patterns, currently about 350 [6-10]. It is believed,
furthermore, that we will eventually find that all naturally occurring protein structures are
composed of very small number of folds, estimated to be ~1000 [11].

The objective of this work is to discuss various means of understanding this finite
universe of genes in terms of an even more limited repertoire of protein folds. This is the
subject of the new field of structural genomics [12, 13]. One can achieve some form of
understanding by performing  large-scale surveys, looking at the occurrence of protein
structures and various protein structural features in the genomes of different organisms.
We use the term “structural censuses” to describe these surveys, emphasizing the intent to
provide a  comprehensive accounting.

To do such a structural census properly, one needs to cluster together 3D structures
into a library of folds and then to match up genome sequences to structures in this library.
One also needs a way to characterize the sequences without structural homologues in
rough structural terms. This is usually done via various prediction techniques, such as
those for secondary structure or transmembrane helices. Then one does “fold counting,”
enumerating how often a fold or structural feature occurs in a given genome or organism.
These specific aspects of a structure census will be discussed at length. But before doing
so it is worthwhile to provide some perspective on the general questions addressed and
how this work relates to other types of genomic analysis.

The Overall Question: At What Structural Resolution Do Organisms Differ?
One interesting question addressed by a census of structures is to what degree

certain folds occur only in certain branches of the “evolutionary tree.” To put it in
somewhat extreme terms, can one explain the obvious morphological differences
between two microorganisms (e.g. between yeast and E. coli) in terms of their having
different protein folds? Alternatively, it may be that most folds occur in every organism
in the same way that the genetic code and many basic biochemical pathways (such as
glycolysis) are almost universally shared. Currently, it is only possible to answer this



4

question anecdotally, in terms of individual structures. One can find evidence for either
viewpoint. On one hand, the immunoglobulin fold, which is usually closely associated
with the eukaryotes (e.g. in the vertebrate immune system), has been found in bacteria,
where it carries out a very different function [14]. On the other hand, the small DNA-
binding fold known as the zinc finger so far appears to be confined to eukaryotes [15].

This question can be rephrased as, "At what structural resolution do organisms
differ?" Structurally, microorganisms appear different on the micron scale, as they have
different internal cell structures, but on the scale of single Ångstroms they appear nearly
the same, containing similar proportions of C, H, O, N, P, and S atoms (Fig. 1). At what
structural resolution can one start seeing differences? It is probably not at the level of
secondary structure (~10 Å) since all organisms are composed of essentially similar
proportions of alpha helices and beta sheets (see below). Is it at the level of protein super-
secondary structure (e.g. four-helix bundles or beta-alpha-beta units) or at the level of
whole domain folds? Or perhaps it is at a higher level, involving the large-scale
organization and regulation of essentially identical protein parts.
This question is especially interesting when one considers the diverse physical
environments inhabited by these organisms -- from high temperature and pressure for
Methanococcus, to normal temperature and pressure for yeast, to high acid for
Helicobacter.

A Structural Census as a Particular Type of “Occurrence
Analysis” in Genomics

Analyzing the occurrence or frequency of folds in genomes is a particular
example of a general type of comparative genomics we dub “occurrence analysis.” This
involves comparing how often a particular entity (e.g. a sequence motif) occurs in various
genomes, and seeing what fraction of a collection of entities occurs in one genome as
compared to another. Several different types of occurrence analysis have been previously
performed, studying genomes at  many different levels.

Starting from the most basic units, genomes have been compared in terms of the
relative frequencies of short oligonucleotide and oligopeptide “words” [16-19].

On the level of individual genes or proteins, the degree of gene duplication in a
number of genomes has been ascertained [20-25]. Other works have investigated the
occurrence of conserved families in several different genomes [26-30]. This can be
performed on a large-scale in a highly automated fashion [31-36]. The recent growth of
databases makes such automatic and objective systems highly desirable. In particular,
with the data of many complete genomes now available, the often arbitrary functional
assignment of homologous genes can be replaced with a system of orthologs and paralogs
(genes with a common ancestor, separated by speciation and presumably performing the
same function, versus genes generated by duplication within the same organism). A semi-
automatic approach was recently developed that compared several genomes and derived
clusters of orthologous groups (COGS) [28]. The approach is straightforward: If one
knows all the potential candidates in a genome for a certain protein function, one can pick
the best one based on the best match to a protein of known function. If the best matches
occur consistently among the same group of proteins from several distantly related
genomes, the proteins are classified as COGS.
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An important application of single-gene occurrence analysis is “differential
genomics.” When two closely related genome sequences are compared, the difference,
i.e. those genes that are present only in one of them, may give a clue to the unique nature
of the microbe in question. For example, a comparison between E. coli and H. influenzae
revealed 116 genes that are present only in the latter [37]. Differential genomics may
have useful applications for attacking microbe-related diseases [38, 39], e.g. finding
genes unique to pathogenic organisms can help in developing antibiotics against them. 

Occurrence analysis can also be carried out on the level of whole metabolic
pathways and systems [40-42]. This work has yielded many interesting conclusions in
terms of the pathways that are modified or absent in certain organisms. For instance,
many of the respiratory enzymes in E. coli are missing in H. influenzae, and the
metabolism in the latter seems to be biased to a relatively nitrogen-rich and anaerobic
environment [4, 43, 44].

Why Analysis of Structure is Particularly Advantageous for
Genome Comparison

The analysis of structure is expected to be particularly advantageous for genome
comparison for two reasons.

Structural Modules are Precisely Defined and Relatively Few in Number
First, structure allows one to define a protein module (or shared part) in both a

more precise and more general sense.
It is possible (and quite productive) to define modules purely in terms of

conserved “blocks” in sequence alignments or small, but distinctive, “motifs” shared by
many related proteins [45-58]. However, functioning protein modules fundamentally
consist of units of 3D structure. In fact, it is usually believed that these structural units
form physically interacting "folding domains," and attempts have been made to see how
well they correspond to exon boundaries and other linear sequence features [59-61]. This
is often not a simple relationship as many structural modules are discontinuous in terms
of sequence -- as when a polypeptide chain starts in one domain, goes through a hinge
region into a second domain, and then returns to the first domain. Nevertheless, relating
modules defined on the sequence level to structure enables them to be better
characterized. This is especially true for groups of aligned structures, which allow the
definition of a conserved structural core [62, 63].

Also, one expects analysis of structure to reveal more about distant evolutionary
relationships than sequence comparison, since structure is more conserved than sequence
or function [64, 65]. In other words, it is at the level of protein structure where the
biologists sees the fewest “parts” and greatest amount of redundancy and reuse.

Similarity in Sequence is More Closely Related to Similarity in Structure than in
Function
A second reason that structural analysis is useful for genome comparisons is that the

relationship between sequence similarity and structural similarity is much better defined
than the corresponding relationship between sequence and function.

It is generally accepted that proteins with similar sequences usually have similar
structures. A decade ago Lesk & Chothia systematically investigated the relationship
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between divergence in sequence and that in structure [64, 66]. Using the limited amount
of data available at the time (32 pairs of homologous structures among 25 proteins), they
found that the extent of the structural changes is directly related to the extent of the
sequence changes. As shown in figure 2, we have repeated the calculations here using a
much larger data set. (Details of the calculations are described in the legend.) Expressing
sequence similarity in terms of the more modern statistical terminology (i.e. P-value
instead of percentage identity), we find very similar results to the original work of Lesk
& Chothia. There are, of course, exceptions where similarity in sequence does not imply
similarity in structure. These usually occur for small proteins, e.g. an artificially designed
sequence of a four-helix bundle could be made more than 50% identical to a
predominantly beta-sheet protein [67, 68]. 

The relationship between sequence similarity and functional similarity is much less
clear [69]. In part, this is because it is much more difficult to precisely specify a function
than a sequence or a structure. Moreover, even in cases where the functional
identification is well specified, there are several examples where highly similar sequences
have completely different functions - i.e. same fold but different function. A well-known
example is the structural protein eye-lens crystallin and the metabolic enzyme gluthatione
S-transferase [70], which have sequence and structural similarity but differ in function.
An extreme example is provided by the enzymes lactate dehydrogenase and malate
dehydrogenase. In protein engineering experiments, Wilks et al. managed to convert one
into the other by changing only a single amino acid [71].

The opposite situation can also be observed, namely when the same function is
performed by several proteins unrelated in structure and sequence - i.e. same function but
different fold. A good example is chloroperoxidase, which has an alpha/beta fold in the
prokaryote Pseudomonas  but has an all-alpha fold in fungi [72, 73]. There are many
more examples of this type of convergent evolution in enzymes [74].

Elements of a Structural Census: Construction of a Fold Library
Thus far, we have described how comparing genomes in terms of structures is a

particular form of “occurrence analysis” and how structure provides a particularly
advantageous subject for comparison. Now we outline what goes into a structure census,
its methodological "elements," and discuss some conclusions from recent work. An
essential element in a survey of known structures is the construction of a library of folds.
This is expected to be an essential data structure in molecular biology, organizing the
collection of gene families like the columns in the chemical periodic table [75].

Pairwise Structural Comparison and Alignment: Automatic vs Manual
To build a fold library, one must have a way of comparing and aligning protein

structures (see figure 3). One approach is to do this manually, the approach taken for the
scop classification of protein structures [7]. On another extreme, there are a number of
algorithms for automatically comparing structures and clustering them into fold families
[76-89]. Finally, there is a hybrid approach, based on both automatic and manual
comparison [10, 90].

Completely automatic methods have the advantage of speed and objectivity.
However, the fold classifications produced by a computer are not always as
understandable or reliable as those produced by humans. Furthermore, although manual
classification is slow, if it is done correctly, it only has to be done once.
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Various Automatic Methods for Structural Comparison
To get a perspective on the automatic methods, it is useful to compare structural

alignment with the much more thoroughly studied methods for sequence alignment [91,
92].  Both methods produce an alignment, which can be described as an ordered set of
equivalent pairs (i,j) associating residue i in protein A with residue j in protein B.  Both
methods allow gaps in these alignments which correspond to non-sequential i (or j)
values in consecutive pairs — i.e. one has pairs like (10,20) and (11, 22).  And both
methods reach an alignment by optimizing a function that scores well for good matches
and badly for gaps.  The major difference between the methods is that the optimization
used for sequence alignment is globally convergent whereas that used for structural
alignment is not.  This is the case for sequence alignment because the optimum match for
one part of a sequence is not affected by the match for any other part.  Structural
alignment fails to converge globally because the possible matches for different segments
are tightly coupled, as they are part of the same rigid 3D structure.

This lack-of-convergence has led to a large number of different approaches to
structural alignment, the methods differing in how they attack the problem. No current
algorithm works all of the time (i.e. for all the pathological cases). The methods also
differ in the function they optimize (the equivalent of the amino acid substitution matrix
used in sequence alignment) and how they treat gaps. Some of the methods effectively
compare the respective distance matrices of each structure, trying to minimize the
difference in intra-atomic distances for selected aligned substructures [80, 83, 93]. Other
approaches, in contrast, directly try to minimize the inter-atomic distances between two
structures, using repeated application of dynamic programming [77, 89, 90, 94, 95]. This
allows structures to be aligned in a similar fashion to normal sequence alignment [96]. A
similar approach is taken in minimizing the "soap-bubble area" between two structures
[87]. Other methods involve other techniques, such as geometric hashing or lattice fitting
[79, 85, 86].

Fusing a Multiple Alignment into a Structural Template

The classification of the entire databank using a variety of the automatic and
manual procedures outlined above has recently been undertaken by a number of groups
[7, 83, 97-101], resulting in the scop, FSSP, LPFC, CATH, and HOMALDB databases.
These databases group the known structures into ~350 fold families, some of which are
quite large (e.g. currently the PDB contains over 166 antibody structures). Because of the
great numbers of structures and of families, it is worthwhile to summarize the common
features within a family, whilst separating out the variable ones. That is, one wants to
know which regions are conserved and which are highly variable, and to fuse all the
conserved regions into a single “core structure” template (figure 3). A number of
approaches have been developed to tackle this problem through determining a mean and
variance for an ensemble of multiply aligned structures and then picking the low variance
atoms as “core” [8, 62, 102, 103].
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Searching the Genome with Structural Templates

Clustering the Structure Databank into Sequence Templates
Once a library of folds has been constructed, one wants to build sequence

templates based on it and then use these to search the genome.  A necessary
methodological preliminary is clustering the known structures into a number of
(sequence) representative domains, using a variety of single or multiple linkage
approaches [6, 67, 104-106]. Currently, the PDB can be clustered in ~1200 representative
domains. Then using structure comparison, one finds that these representatives are
distributed amongst 338 folds, giving about three sequence families per fold [6]. The fact
that the number of folds is so much less than the number of sequence families highlights
the fact that many of the evolutionary similarities between highly diverged organisms
may only be apparent in terms of structure [107]. Folds can, in turn, be ranked the
number of different families of non-homologous sequences they are associated with.
Folds uniting many distinct sequence families have been dubbed superfolds [108].  These
may represent intrinsically stable and favorable structural arrangements, as suggested by
a variety of analyses [108-110].

At this point one has ~350 3D-structural alignments, each of which “connects” a
number of non-homologous sequences. These can be used as “seeds” to build up large
sequence alignments from the major databases using standard pairwise searching tools -
e.g. the popular BLAST and FASTA programs on the SwissProt and GenBank databases
[111-115]. A number of recently developed methods of transitive sequence matching
(through a third intermediate sequence) are expected to improve the sensitivity of these
pairwise searches somewhat [116-119].

As many of these alignments contain quite a few sequences, it can be advantageous to
fuse them into a consensus pattern or template, just as is done with structures [62] (Fig.
3). For this, a variety of probabilistic approaches can be used. A most popular
representations is the Hidden Markov Model (HMM) [120-125]. This is a generalization
of the sequence profile, and like a profile it gives an explicit probability for each of the 20
amino acids to occur at each position in the model [126]. The HMM goes beyond a
profile in associating with each position an explicit probability for introducing a gap
(either for insertion or deletion).

Microbial Genome Sequences

Once formed, sequence templates can be compared directly against the genomes.
This can take place in a variety of ways. The most straightforward is to just compare each
sequence in the template against the genome using the standard pairwise comparison
programs (e.g. FASTA, BLAST, or straight Smith-Waterman [111-113, 127]).
Alternately, one can use profile or HMM searching programs for those sequences that are
part of an explicit pattern. However, in doing this one has to consider some important
issues related to bias (see below).

At the time of this writing there are 13 microbial genome sequences currently
available (Table 1). These already provide a most diverse comparison -- representing
microbes from the three kingdoms of life (Eukarya, Eubacteria, Archea), from different
environments (room temperature and pressure to high temperature and pressure, and
neutral pH to highly acidic), with a wide range of genome sizes (0.6 to 13 Mb), and with
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a variety of modes of life (from parasite to autotroph).
One point worth mentioning is that the genome data is constantly changing and is

contingent on the current “state of the art” in gene finding. The data used in any analysis
reflects a particular snapshot of this ongoing process. For instance, the current E. coli
data file is version M52, containing 4290 ORFs. This is a more recent version and
contains a different number of ORFs than the one referred to in the official publication
(M49, containing 4288 ORFs) [128]. For yeast there is some uncertainty regarding
whether all of the ORFs in the web site file are really genes.  In particular, 5888 of the
6218 ORFs are definitely believed to be genes, but there is some question about the
remaining 330 [129]. Furthermore, quite a number of yeast sequences (initially)
annotated to be ORFs are, in fact, transposons, which should properly be segregated from
the rest of the proteome [130].

Similarity in Both Sequence and Structure is Best Described
Statistically

Similarities are best expressed statistically in terms of a P-value
The preceding section was concerned with comparison, both for structure and

sequence. To do this right, one needs to be able to assess the significance of a given
comparison score – i.e. what does a score of 392 mean? This is often quite subtle and, in
a sense, relates to the fundamental problem of what constitutes similarity in biology.
Moreover, it is a most important issue with respect to large-scale genome surveys, which
involve hundreds of thousands of comparisons. It is essential to have a rapid and
automatic method to assess the significance of a given comparison score (i.e. to set a
threshold), as it is neither possible nor desirable to do this by hand.

The best way to assess significance is to see how a particular similarity score compares
in a statistical sense to all the others. A major development in the past few years has been
the implementation of probabilistic scoring schemes for doing just this [131-137]. These
give the significance of a match in terms of a P-value rather than an absolute, “raw” score
(such as percent identity or RMS). A P-value is the chance that one would get a given
similarity score (or better) from a random alignment. That is, P(s > S) = .01 means that a
randomly generated score s would be greater than the threshold score S (e.g. 392) 1% of the
time. The P-value gives the rank of a score relative to all the other possible scores. It places
scores from very different programs in a common framework and provides an obvious
way to set a significance cutoff (i.e. at P  < 0.0001 or 0.01%).

P-values are closely related to another quantity called the e-value, which is the
number of false positives expected with a given score threshold in a whole databank
comparison. Thus, the e-value is just the databank size multiplied by the P-value.

Determination of P-values involves determining the score distribution for true
negatives, i.e. for random alignments. This can be done in a number of ways: simulating
random alignments, analytically deriving the score distribution for a random alignment, or
doing an all-vs-all comparison of the databank and curve-fitting to the observed score
distribution.

Statistics for Sequence Similarity

For sequences, P-values were first used in the BLAST family of sequence searching
programs, where they are derived from an analytic model for the chance of an arbitrary
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ungapped alignment [131, 135]. P-values have subsequently been implemented in other
programs such as FASTA and gapped BLAST using a somewhat different formalism
[116, 136-138]. In all the formalisms, P-values for sequence comparison are derived from
an extreme value distribution. That is, sequence comparison scores are observed to follow
a distribution like exp(-S-exp(-S)), which has a much longer "tail" than the rapidly falling
off normal distribution exp(-S2). Such a distribution arises naturally from repeatedly
considering the maximum of a number of independent, random variables. This is in
contrast to the normal distribution, which arises from repeatedly considering sums of
random variables.

In general, P-values give similar results to more conventional scores, such as
percent identity, but they have been shown to be better calibrated and more sensitive for
marginal similarities, taking into account compositional biases of the databank and the
query sequence [94, 132, 133]. In particular, Brenner et al. tested the applicability of
probabilistic scores to the detection of structural relationships [67, 139, 140]. They found
that the FASTA e-value closely tracked the error rate against a test set of known
structural relationships. That is, with regard to the number of false positives, expectation
tracked reality.

Statistics for Structural Similarity
Some of the current methods for structural alignment have associated with them

probabilistic scoring schemes.  In particular, one method computes a P-value for an
alignment based on measuring how many secondary structure elements are aligned, as
compared to the chance of aligning this many elements randomly (VAST) [86]. Another
method expresses the significance of an alignment in terms of the number of standard
deviations it scores above the mean alignment score in an all-vs-all comparison (i.e., a Z-
score) [8, 83].

We have recently developed a simple empirical approach for calculating the
significance of a structural alignment score based on doing an all-vs-all comparison of
the databank and then curve fitting to the observed score distribution for the true
negatives [90, 94].  We can apply our approach consistently to both sequences and
structures.  For sequences, we compared our fit-based P-values with the differently
derived statistical scores from commonly used programs such as BLAST and FASTA and
found substantial agreement. For structure alignment, we follow a parallel route to derive
an expression for the P-value of a given alignment in terms of a structural alignment
score.

We find that scores from structure alignment follow a similar extreme-value
distribution to those in sequence comparison, allowing one to adopt a uniform statistical
formalism for both comparison techniques. (As dynamic programming applied to either
sequence or structure alignment essentially finds a maximum score over many possible
alignments, it is quite reasonable that this should be the case. However, this is not
trivially obvious, as the dynamic programming score does not result from considering the
maximum of truly independent variables.)

A nice aspect of structural alignment is that one can visualize exactly what is meant
by a strong similarity in comparison to a marginal one. Examples shown in figure 4,
which shows a strong similarity (for two globins), a weaker one (for two
immunoglobulins), and a very marginal one.
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Overall “Inventory” Statistics in a Census Calculation

Distribution of Folds Amongst Genomes (Venn Diagrams)
After setting a uniform comparison threshold and running the fold library against

the genomes, it is possible to see how the known folds are distributed amongst different
genomes, or partial genomes. There are a number of web sites that compile this data
automatically – e.g. PENDANT and GeneQuiz [33, 141]. However, few detailed analyses
have been published, mostly because only recently have enough complete genomes
become available for this sort of comparative analysis.

A recent work illustrates what is initially possible [24]. This analysis focussed on
three of the first genomes to be sequenced, the first ones from each of the major
kingdoms: i.e., H. influenzae (a eubacteria, [4]), M. jannaschii (an archaeon, [142]), and
S. cerevisiae (yeast, a eukaryote [129]).

As shown in Figure 5, the analysis can be conceptualized in terms of a Venn diagram,
similar to those used for studying the occurrence of motifs and sequence families  [143,
144]. About half of the known folds (148) are contained in at least one of the three
genomes, and 45 folds are shared amongst all three genomes. These shared folds
presumably represent an ancient set of molecular parts.

It is possible to classify each fold as all-alpha, all-beta, alpha/beta, alpha+beta, or
“other” using the original definitions of Levitt & Chothia and then to see how the folds
corresponding to each structural class are distributed among the genomes [145, 146].
Overall, the genomes contain a disproportionate number of mixed folds (α/β and
α+β, 83/148), and the shared fold are even more enriched in α/β super-secondary
structures, with 38 of 45 having a mixed architecture.

A related analysis looked at the occurrence of folds in different groups of organisms
(e.g. plants vs. animals) [147]. This did not involve complete genomes but rather
partitioning the sequence databank into a number of distinct phylogenetic sets. Such an
analysis suffers from various biases (as discussed below), but it is nevertheless
suggestive, showing that more closely related organisms had a greater number of folds in
common.

 It is expected that many more analyses such as these will be undertaken in the
future as more genomes are sequenced and structures determined [148]. It is difficult to
express the shared folds amongst more than three genomes in terms of a Venn diagram,
so other representations become useful, such as cluster trees [149].

Frequency that Folds Occur in a Genome (“Top-10 lists”)

Another simple statistic to look at is how often a particular known fold occurs in a
genome, i.e. the fold frequency. In the previous work comparing three genomes, these
frequencies were expressed in terms of “top-10” lists for the most common folds in a
genome [24]. As was the case for the folds overall, most of the common folds have an
α/β architecture.

Combining the frequent fold analysis with the Venn diagram, one can determine
the common folds that are shared by all genomes. As shown in figure 6, ordered in terms
of their frequency of occurrence, the top-five common and shared folds when comparing
yeast, Haemophilus influenzae, and Methanococcus jannaschii are the P-loop containing
NTP hydrolase fold, the Rossmann fold, the TIM-barrel fold, the flavodoxin fold, and the
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Thiamin-binding fold. Each of these folds is associated with basic metabolism (as
opposed to other functions such as transcription or regulation). They are all classic α/β
proteins and share a remarkably similar super-secondary structure architecture, with a
central sheet of parallel strands with helices packed onto at least one face of this sheet.
Moreover, the topology of the central sheet is very similar in all the proteins. Almost all
of the connections are right-handed links between adjacent parallel strands through an
intervening helix packed onto the central sheet.

These top-10 lists rank folds by how often they occur in the genome, tending to
emphasize highly duplicated genes. Folds can also be ranked by a number of other
criteria. For instance, they can be ranked by the number of non-homologous sequence
families they are associated with, i.e. their superfold ranking. This number is not always
correlated with how often the fold occurs in microbial genomes, but it is the case that
superfolds are among the most common folds found in genomes. Folds can also be
ranked in terms of expression level, essentially a ranking by mRNA occurrence in the
cell. This has already been done in non-structural terms for all the genes in yeast [150-
152]. In table 2, we see how this expression level ranking maps onto folds. Using data
from DeRisi et al. [152], the figure shows the most highly expressed folds in yeast grown
in two different conditions (high sugar and low sugar, aerobic vs. anaerobic conditions).
The ranking of folds is clearly different from that purely based on duplication.

The Problem of Sampling Bias Affects the Statistics

General Issue of Bias in the Databanks
One of the most important issues in doing a large-scale survey is avoiding biases.

Because of the preferences of investigators, some types of sequences or structures are
over-represented and others are under-represented in the databanks. For instance, in
GenBank there is an over-representation of globins from humans relative to flies.
Moreover, a particular fold may be found in the human but not in the fly simply because
not all the fly sequences are currently known.  Focussing only on organisms for which
complete genomes are known eliminates this obvious form of bias. However, there is
another bias that is not overcome by knowledge of complete genomes.  The selection of
proteins in the PDB is also biased by the preferences of individual investigators and by
the physical constraints on what will crystallize (or can be studied by NMR
spectroscopy). For instance, the PDB currently contains about 5500 entries (5493
identifiers and 10781 domains). This total includes 222 structures for T4 lysozyme, but
only a single structure for the “equally important” tyrosine kinase and topisomerase-II
proteins.

Structures in the PDB are also biased towards certain commonly studied organisms.
Thus, a much larger percentage of folds is known for the bacteria Haemophilus in
comparison to the archeon Methanococcus, even though both have roughly the same
number of genes [24].

Another issue related to the state of the structure databank is that the absolute counts
found in a given genome survey are contingent on the evolving contents of the databank.
Thus, over time as more structures are added to the databank, one should expect such
statistics as the most common folds and number of shared folds to change somewhat.
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The Multi-domain Nature of Proteins Creates Counting Problems
A second type of bias has to do with the fact that protein structure is fundamentally

arranged around the level of folding domains whereas statistics for genomes are often
calculated and best understood in terms of the number of genes (Fig. 7). For instance,
when one talks about how prevalent the kinase and Rossmann folds are in the yeast and
E. coli genomes, one is implicitly comparing the number of matches that known kinase
and Rossmann fold structures have in the ~6200 yeast ORFs relative to the ~4300 E. coli
ORFs. However, it is possible for a single gene to contain a number of kinase fold
domains or to simultaneously contain both a kinase and Rossmann fold. Thus, the total
number of domains in a genome is probably a better standard for these comparisons.
Unfortunately, one does not know this number. But one does know that the number of
domains is not related simply to the number of genes. For instance, on average a protein
is about 50% larger in yeast than in E. coli (317 vs. 466), meaning that there are probably
twice as many possible domains in yeast as in E.coli.

Another problem emanating from the multi-domain nature of proteins is highlighted
in Figure 7. When clustering genes based on their sequence similarities, simple single-
linkage  clustering can give potentially misleading results. As has been pointed out
before, it may group together two multi-domain proteins (AB and bc) containing the two
unrelated domain folds (A and c) based on their having similarity only through a common
domain (B and b) [42, 50].

Subtle Biases in Comparison Techniques

A final, rather subtle form of bias results from the type of sequence comparison
method used. Different pairwise comparison methods (e.g. Smith-Waterman vs. FASTA)
and different thresholds will give rise to different absolute numbers of fold counts, but
the relative values between different folds will usually remain comparable.  However, as
discussed above, there are other, potentially more sensitive, methods of comparing
sequences to structures – e.g. profiles, HMMs, and motif analysis, and threading [55, 125,
153-155]. These latter methods find more homologues for certain folds, particularly those
for which multiple alignments are available. However, the sensitivity improvement is not
consistent for all folds. This is not advantageous for a large-scale survey where uniform
sampling and treatment of the data is more important than sensitivity. One is more
concerned with accurate relative numbers than with absolute values.  Cobbling together a
survey through a disparate collection of tools and patterns creates the problem of devising
consistent scores and thresholds.  This problem is particularly acute in the case of
manually derived sequence patterns and motifs, since an expert on a particular fold or
motif would expect his pattern to find relatively more homologues than a pattern not so
expertly constructed.  The simple approach of just using pairwise comparison, applying
the same objective procedure to each fold, circumvents these problems somewhat.
Furthermore, it has an added advantage in that it can be performed automatically without
manual intervention and, consequently, can easily be scaled up to deal with large data
sets.

Various weighting, sampling and clustering schemes attempt to correct for both
obvious and more subtle biases [156-160]. Potentially, even methods developed to
correct for biases in governmental censuses may be of use [161, 162]. However, in a
large-scale structure survey nothing can really make up for essential folds that are
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missing.

When will we know all structures in a genome?
One way to overcome the biases in the databank is to wait until we know all

structures, or at least all the structures in a number of genomes.  How long will this take?
We tried to answer this question in a rough fashion by doing the “back of the envelope”
calculation shown in figure 8. We looked at how the fraction of structurally
“uncharacterized” genome sequence is decreasing each year, as more structures are
determined. By uncharacterized sequence we mean, regions of genome sequence that are
not matched by a known fold or annotated to be a transmembrane helix or low-
complexity region. (Our exact definition is given in the legend to the figure.) For the
purposes of this calculation, one imagines that the genomes were sequenced in 1975.
Then, based on the number of folds known in that year the fraction of uncharacterized
region is computed. The same thing is done for 1976, 1977, and so on. Finally, based on
the values for all genomes over the last ten years, a trendline is extrapolated to zero
uncharacterized regions. This gives the rather pessimistic conclusion that all the
structures will not be known until 2050.

Our conclusion is a bit more conservative than other estimates [6, 11, 163], which
estimate that all the structures in certain small genomes could be known in a decade. This
is due to a number of reasons:

(1) The statistics here are in terms of residues rather than whole sequences. This
helps correct for the “multi-domain” counting problem discussed above.

(2) The trendline is based on the average of eight known genomes, rather than
focusing on the smallest one, M. genitalium, which Fischer & Eisenberg [163]
analyzed.

(3) Only standard sequence comparison rather than more sensitive threading
techniques were used to match sequences with structures. Fischer & Eisenberg,
for instance, reported a 6% improvement in sensitivity over standard sequence
comparison when using their threading technique.

(4) The method of estimating folds here does not correct the duplications that may
exist in the uncharacterized sequence – that is, unknown folds that occur
multiple times. These may reduce the number of future structure determinations
necessary to match all the genome sequences. However, our calculation also
does not correct for duplications in the characterized regions – that is, for
known folds that occur multiple times. Thus, we hope that by ignoring
duplication altogether it will “cancel-out” somewhat. However, if unknown
folds were significantly more duplicated than known ones this would tend to
inflate the time necessary to determine all the folds.

Prediction for Characterizing Sequences without a Structural
Homologue: Methods

Basic Single-Sequence Secondary Structure Prediction
A conservative calculation, thus, shows that it will take a while before we can

truly compare microbial genomes in terms of known folds. Consequently, to compare
genomes, today, comprehensively in terms of protein structure, we will need to use
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structure prediction.  As compared to counting known folds, structure prediction has both
advantages and disadvantages when applied to genome comparison.  On the plus side, it
does not suffer from the problem of biases that so plagues the fold counting, since it can
potentially be applied uniformly to all the ORFs in a genome. However, the downside is
that structure prediction is inaccurate, to varying degrees (whereas fold counting can be
made almost perfectly “accurate” with suitably severe sequence comparison thresholds).

Although the basic hypothesis that the amino-acid sequence completely specifies
the 3D structure of a protein is believed to be valid, no current “ab initio” method has
proven successful in predicting 3D structure from the sequence alone [164-166].
Consequently, by structure prediction we mean more limited, one-dimensional,
predictions for secondary structure, which assign individual residues in the protein
sequence to discrete states likestrand, coil, or helix (soluble or transmembrane).

One of the most straightforward secondary structure prediction methods is the GOR
method  [167-169]. This is a well-established and commonly used approach. It is
statistically based so that the prediction for a particular residue to be in a given state (say
Ala in a helix) is directly based on the frequency that this residue occurs in this state in a
database of solved structures (taking into account neighbors at ±1, ±2, and so forth). For
the most up-to-date version of the program, the prediction for residue i is based on a
window from i-8 to i+8 around i, and within this window, the 17 individual residue
frequencies (singlets) are combined with the frequencies of all 136 possible di-residue
pairs (doublets) [167].

Multiple-Sequence Secondary Structure Prediction, Improved Accuracy but
Some Pitfalls
The GOR method has a well-documented single-sequence prediction accuracy of

65%. This is considerably lower than the current “state-of-the-art” methods that
incorporate multiple sequence information. In particular, Rost & Sander used a two-
layered neural network trained on a non-redundant database of 130 protein chains to
predict the secondary structure [170]. If they include protein family information in the
form of multiple-sequence alignments, they get an overall three-state accuracy of 71%.
Salamov & Solovyev’s nearest-neighbor algorithms give slightly better results (three-
state accuracy to 72.2%) [171]. The DSC method (Discrimination of Secondary structure
Class), which is very similar in conception to GOR but uses multiple sequences, achieves
70.1% accuracy [172]. Finally, the method of Livingstone & Barton [173] groups
residues based on the similarities and differences in their physicochemical properties,
achieving a similar accuracy.

The conspicuous agreement in accuracy among the multiple-alignment methods
(~70%) may be related to a baseline level of agreement between the secondary structure
of two proteins both having the same 3D fold [174]. Note, however, that using multiple
alignment methods comprehensively on genomes introduces subtle biases into the
analysis.  One only gets higher accuracy where one can construct a multiple alignment.
However, it is not possible to obtain multiple sequence alignments for most of the
proteins in a genome. Consequently, bulk predictions of all the proteins in a genome
based on multiple-alignment approaches are in a sense skewed. One gets two distinctly
different types of prediction, depending on how many homologues a given protein has.
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Transmembrane-Helix Prediction
Several prediction methods have been developed for transmembrane helices.

Some of them are based on parameters derived from the intrinsic properties of amino
acids, usually their oil-water transfer energies. A widely used example is the GES
hydrophobicity scale [175]. To use this, one calculates the hydrophobic character of each
20-residue sequence span (the typical length of a transmembrane helix) using the values
in the scale and compares them against a cutoff (usually -1 kcal/mol⊇residue). A value
under this cutoff is taken to indicate the existence of a transmembrane helix. Similar
approaches were taken by other authors, who used different scales, e.g. the Kyte-Doolittle
or the Eisenberg scales [92, 176-179].

Other transmembrane-prediction methods involve accumulating statistics on the
small set of known membrane proteins in the databanks, calculating “propensity” values
for each position in the sequence or using neural networks [180-182]. Both these
approaches utilize multiple-alignment information to improve accuracy [180, 182].
Furthermore, by analyzing compositional differences between the membrane-spanning
segments, they can predict not only the location, but also the orientation of the helices,
based on the observation that positively charged residues are more abundant on
cytoplasmic side of the membrane [178-180, 183].

There is a subtle problem that exists in databank-derived membrane protein
structure potentials. Since there are so few known membrane protein structures, each of
them rather strongly affects the potentials. Moreover, many of the sequences
characterized as "gold-standard" membrane proteins were in fact determined to be such
by their original depositors through the application of computer programs, not by
experiment.  These then are often carelessly used as training data later.  Thus, one has
prediction serving as data, again biasing the potentials to find more of what we already
know.  This problem even exists in regard to membrane proteins characterized by
experiment, as even in this case the exact boundary of the TM helix is often determined
through application of computer programs.

Prediction for Characterizing Sequences without a Structural
Homologue: Results

When applied in bulk to the currently known genomes, secondary structure
prediction has shown that many microbial genomes have remarkably similar composition
of helices and strands (by residue, 40% helix and 17% strand, and by element, half-and-
half) (Table 3) [24, 184].  Furthermore, the occurrence of all-alpha, all-beta and mixed
architectures appears also to be very similar [185]. This result is rather surprising when
one considers that the genomes have significantly different amino acid composition and
different amino acids have different physical propensities to confer secondary structure
[24]. There are, however, some differences in the occurrence of super-secondary structure
elements.

There have also been many surveys of the occurrence of membrane proteins in
genomes  [24, 39, 149, 164, 182, 186-190, 191 ]. The overall number of membrane
proteins found depends somewhat on the prediction method and threshold used.
Nevertheless, there seems to be a broad agreement that ~20-30% of the proteins in
microbial genomes are membrane proteins, with yeast having a slightly larger fraction.
Membrane protein structures can be classified by how many transmembrane (TM) helices
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they have. In all the surveys, the number of TM-helices per protein follows a similar
decreasing pattern in each genome, with fewer proteins having large numbers of TM-
helices.

To summarize this data, one can plot the fraction of proteins with a given number
of TM-helices on a log-log scale and get a straight line trend as shown in Figure 9 [149].
The fraction F of proteins in the genome with a given number n of TM-helices can be fit
with the expression F(n) = .18 n-1.8, where n ranges from 0 to 15. (Without great
degradation of the fit, the even simpler expression 1/[5n2] can be used as well.) This
expression has a form like that of the Zipf’s Law that often occurs in the analysis of word
frequency in documents [192]. Similar Zipf-law-like expressions have been found to
apply in a variety of other situations relating to the occurrence of proteins (e.g. in relation
to the occurrence of oligopeptide words [193-195]). Moreover, this particular functional
form for the occurrence of proteins with a given number of TM-helices falls off smoothly
with increasing numbers of helices. This implies that there is no particular preference (i.e.
local maximum) for proteins with seven TM-helices and, thus, suggests that this heavily
studied group of proteins, which includes G-protein coupled receptors, is not
exceptionally prevalent in microbial genomes.

Most of the membrane-protein surveys agree on this absence of 7-TM proteins in
microbial genomes; some also claim to find more 6 and 12 TM proteins in bacterial
genomes corresponding to well known families of transporter proteins [24, 187, 189,
191]. In contrast, surveys of the incomplete (and highly biased) set of human sequences
and the unfinished worm genome find a relative abundance of 7-TM proteins in these
multi-cellular organisms [187, 191].

Discussion and Conclusion

Summary
We have described how genomes can be compared in terms of protein structure. As

the number of genes in a genome and the total number of folds in nature are both quite
limited, these comparisons take the form of surveys, which we dub censuses, of finite
parts lists. Surveys of the occurrence of protein folds in genomes have many similarities
with other types of whole-genome “occurrence” analyses, focussing, say on motifs or
pathways. However, structure has a number of special aspects that make it particularly
advantageous for genome comparison. It has a more certain relation to sequence
similarity than does function, and it allows for precise definition of module, or basic unit.
An essential element for a structure census is a library of protein folds that arranges all
the known structures into “fold families.” We described how this library could be built up
by using an automatic comparison program. We show how important statistics are for
defining the similarities within this library and between templates in the library and
genome sequences. After building the library one can count folds in genomes, expressing
the results in the form of Venn diagrams and “top-10” statistics for shared and common
folds.  Previous analyses have shown that folds shared between very different
microorganisms - i.e. between those in three different kingdoms - have a remarkably
similar structure, being comprised of repeated beta-alpha-beta super-secondary-structure
units.  A major problem with this sort of analysis and fold counting in general is that only
a small subset of the folds in a complete genome are currently known and this subset is



18

prone to various forms of sampling bias. One way of overcoming biases is through
structure prediction, which can be applied comprehensively to all ORFs in a genome.
There are many variants on the principal prediction techniques for secondary structure
and transmembrane-helices (TM-helices).  These have been applied in a comparative
sense to a number of genomes by various investigators, giving similar results: that the
fraction strands and helices in a number of genomes is approximately constant and that
the fraction of proteins with a given number of TM-helices falls off with more TM
elements approximately according to Zipf law. This latter result indicates that there is no
preference for the highly studied 7-TM proteins in microbial genomes.

Continuously updated tables and further information pertinent to this review is
available over the web at http://bioinfo.mbb.yale.edu/genome.

General Perspective on the Scale of a Genome Survey
As a concluding point, it is worthwhile to put the scale of the genome surveys into a

broader context. As described above, it is believed that there are roughly 1000 folds (i.e.
fundamental objects) in nature. These can be arranged into a fold library, and when
completed this fold library will constitute a most important “data structure” in molecular
biology.  How does it compare with the fundamental data structures in other scientific
disciplines?  As shown in figure 10, in physics there are ~10 basic data objects, the
fundamental constants, the speed of light, the mass of an electron, etc. This is a small
enough number so that one can keep them all in memory. Physicists understand the world
through constructing intricate mathematical relationships between these constants and
actual physical observables.  In chemistry, there are about an order of magnitude more
fundamental data objects, the 113 chemical elements.  This is too many things to keep in
one's head at once so usually these elements are written down on a page in the form of
the periodic table.  Chemists understand the world by seeing trends and periods in this
table.  In (molecular) biology we expect to have at least an order of magnitude more data
objects in the fold library than the elements in the periodic table.  Moreover, each fold
represents a substantially more complex entity than a physical constant or chemical
element. Consequently, it is not possible to keep the fold library in one's head or write it
down on a piece of paper.  It has to be stored in a computer database.  What type of
understanding can we expect from this database, which we can carry with us in our
minds? It is not going to be mathematical relationships as in physics; rather, it is going to
be statistics, in the sense of the top-10 fold list and the P-value for similarities, discussed
earlier. Thus, our goal in these large-scale surveys is really statistical understanding.

It also interesting to note that the data-set scale in molecular biology is
approximately the same as that faced by economists and financiers studying the stock
market. The stock market contains roughly 1000-10,000 well-defined objects, i.e. public
companies. While it is, of course, possible to study these each individually, it is not
possible to do this for all companies simultaneously, and economists understand the stock
market through various key statistics, summarizing large groups of companies (e.g.
market indices for various sectors). The next larger size data set occurs in other branches
of social sciences, such as demographics and political science, when one is concerned
with surveys of whole populations, as in political polls. Here the number of fundamental
data objects can easily exceed 1 million. However, the exact number and description and
of each data object is no longer possible, even in the context of a computer database, so
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one is no longer surveying a finite list, but rather sampling a large population to estimate
various statistics.
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Table 1, Current Microbial Genomes Available

Abbrev Genome Reference
HI Haemophilus

influenzae
[196]

MG Mycoplasma
genitalium

[197]

MJ Methanococcus
jannaschii

[198]

SS Synechocystis sp. [199]
MP Mycoplasma

pneumoniae
[200]

SC Saccharomyces
cerevisiae

[5]

HP Helicobacter pylori [190]
EC Escherichia coli [201]
MT Methanobacterium

thermoautotrophicum
[202]

BS Bacillus subtilis [203]
AB Archaeoglobus

fulgidus
[204]

BB Borrelia
burgdorferi

[39]

AA Aquifex aeolicus [205]

Table lists currently published microbial genomes, which are discussed in text. This table
will rapidly be out of date, so it is probably best to consult a website, such as the TIGR
microbial database (http://www.tigr.org/tdb/mdb/mdb.html) or our own genomes and
structures site (http://bioinfo.mbb.yale.edu/genome).
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Table 2, Common Folds Ranked by Duplication and Expression

Rep.
Structure

Genome
Duplication

Expression
(aerobic)

Expression
(anaerobic)

scop fold name

1hcl 1 3 4 Protein kinases (PK), cat. core

1gky 2 1 2 NTP Hydrolases with P-loop

1ard 3 9 5 Classic zinc finger

2rn2 4 2 1 Ribonuclease H-like motif

1xel 5 4 3 Rossmann Fold

125d 6 6 7 Zn2/Cys6 DNA-binding dom.

2bbk-H 7 8 16 7-bladed beta-propeller

1byb 8 5 6 TIM-barrel

1fxd 9 7 10 like Ferrodoxin

1enh 10 30 36 DNA-binding 3-helical bundle

… …

1lep-A 17 10 9 GroES-like

… …

1dkz-A 22 11 8 like HSP70, Ct-dom.

This table shows the most common folds in the yeast genome ranked according to a
variety of criteria. Column 5 (“name”) gives the scop name for the fold, as determined by
scop [7] (In the table "dom" is used as an abbreviation for domain, "Nt-dom," for N-
terminal domain, and "Ct-dom," for C-terminal domain.) Column 1 (“Rep. Struc.”) gives
a representative structure with this fold, including residue selection.  Column 2
(“Duplication”) gives an ordering of folds in terms of the number of times they are found
in the yeast genome. For instance, the top fold (kinase) is found 110 times, while the
second fold (NTP hydrolase) is found 69 times. Columns 3 and 4 (“expression”) give an
ordering of folds in terms of their degree of expression. Using the data from DeRisi et al.
[152], the total expression E of a fold F is calculated as a sum of the expression levels of
all the ORFs that contain this fold. The expression level of a given ORF (i.e. ORF i) is
the degree of its “Red” color on a cDNA microarray R(i), less the background Rback(i),

viz: ∑
∀

−=
Fcontainingi

back iRiRFE )()()(  . Column 3 gives the expression in aerobic conditions

(high sugar, second time-series data point in DeRisi et al.), and Column 4, in anaerobic
conditions (low sugar, high ethanol, last time-series data point in DeRisi et al.). Note how
some folds that are in the top-10 in terms of duplication are not in this select list in terms
of expression (e.g. “DNA-binding 3-helical bundle”). The table is adapted from [149]. It
is available in its entirety (i.e. not just top-10) over the web at
http://bioinfo.mbb.yale.edu/genome/browser/fold-report.
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Table 3, Overall Predicted Secondary Structure Composition

Total Number Frac. a.a. in...

ORFs a.a. strand helix

Avg 2206 775998 17% 39%
SD 1731 1% 2%

EC 4290 1358465 17% 39%
HI 1680 505279 16% 41%
HP 1577 500616 15% 42%
MG 468 170400 17% 39%
MJ 1735 497968 19% 37%
MP 677 237905 17% 39%
SC 6218 2900670 17% 34%
SS 3168 1033450 16% 38%

Secondary structure composition of eight genomes, as predicted by the GOR program
[167], applied to every amino acid (a.a.) in each genome. This gives a somewhat lower
fraction of helix than in one just predicts the structure of the uncharacterized regions as
defined in Figure 8.  Genome names are defined in Table 1. Table is adapted from [184].
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Figure 1, At What Structural Resolution do Organisms Differ?
Schematic illustrates a question involved in comparing genomes in terms of protein folds.
Different organisms (e.g. a yeast and E. coli or a person and a plant) clearly appear
morphologically distinct at macroscopic resolution (1 m to 10-6 m).  However, they look
the same at truly atomic resolution (~1 Å), where they are composed of similar
proportions of the organic elements. At what resolution does one start to see differences?

Figure 2, Relationship between Sequence Similarity and
Structural Similarity

This figure gives an updated version of Chothia & Lesk’s classic plot relating divergence
in sequence to divergence in structure [64].  In the original plot Chothia & Lesk aligned
32 pairs of homologous structures (e.g. globins from two different species). For each pair
they calculated a sequence similarity, in terms of a percentage of identical residues for
aligned atoms (“PID”), and a structural similarity, expressed as the RMS deviation in
alpha carbon positions of aligned atoms (“the RMS”). They found that the two quantities
appeared to be highly related, following the relationship RMS = 0.4 exp (1.87 PID). To
update this plot, we used a much larger data set, the scop classification of protein
structure, version 1.35 [7]. This data set contains more than 14000 pairs of similar
structure. (We used exactly 13967 pairs.) Instead of describing sequence similarity of
each pair in terms of percentage identity, we used the more modern statistical language,
the P-value [94, 136]. Then depending on whether or not a given pair had any appreciable
sequence similarity, we aligned it, either using standard Needleman-Wunsch sequence
comparison or a structural alignment program [90, 96], and did a least-squares fit based
on the aligned atoms. This allowed us to characterize the structural similarity of the pair
with two numbers, an RMS and the number of aligned atoms (N). For all the pairs within
a range of sequence alignment scores (i.e. a bin), we calculated various RMS statistics,
mean, median, and top and bottom quartile. Finally, we graphed these quantities versus
sequence similarity (P-value). This plot shows a similar relationship between sequence
and structure as in the original work of Chothia & Lesk.

Figure 3, A Fold Template
TOP-LEFT shows a structural alignment of two similar protein structures (globins). TOP-
RIGHT shows how a number of aligned structures can be fused into a “fold template,”
where the variability at each aligned position is represented with an “uncertainty
ellipsoid.” A large number of these fold templates could constitute a fold library.
BOTTOM shows the fold template in terms of sequence. Note how the conserved, “core”
regions are disjoint in terms of sequence.

Figure 4, The Range of Structural Similarities
LEFT, An easy to align pair, two globins. The aligned positions are indicated by small,
gray CPK spheres. Most of the residues are aligned correctly. CENTER, A harder to
align pair, an immunoglobulin light-chain variable domain (d7fabl2) and an
immunoglobulin constant domain (d1reia1).  RIGHT, A very hard to align pair, the C-
terminal domain of C-terminal domain glyceraldehyde-3-phosphate dehydrogenase. The
left half of the subfigure shows wire frames, which illustrate how hard the relationship is
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to see. These structures (d1gd1o2 in the TOP-HALF and d1dpga2 at BOTTOM-HALF)
are considered to share the fold. This is highlighted in the ribbon diagram (RIGHT-
RIGHT) and indicated in the topology diagram. This figure is adapted from [90].

Figure 5, Distribution of Known Folds amongst the Genomes
This figure is adapted from [24, 147]. At the time this analysis was done there were 300
known folds, somewhat less than at present (~350). TOP, of the total 300 folds, 148
appear in the 3 genomes, with 45 shared between all three. The abbreviations for the
three genomes are shown in Table 1. Most of the folds are either in the HI or SC
genomes, even though the HI genome is smaller the MJ one. This reflects the bias in the
structure databank. BOTTOM shows how the 300 folds are distributed amongst ALL
bacterial and eukaryotic sequences, showing how representative a genome is for a whole
kingdom.

Figure 6, Five Folds common in All Three Kingdoms
The figure shows five basic molecular parts, five folds that are shared by SC, HI, and MJ
and are common in each of the three genomes. Here “commonness” is determined by the
average frequency rank of the fold over each of the three genomes. All folds are drawn
with molscript [206]. Also shown are highly schematic views of the sheet topology.
Boxes indicate parallel strands in a beta-sheet with their order noted. (Strands are coming
out of the page.) Solid arcs joining the boxes indicate right-handed connections between
the parallel strands. All of these involve skipping no more than 2 strands and are through
a parallel helix packed onto the sheet, from above or below. Half of an arc indicates that
there is a parallel helix connected to either the first or last strand of the sheet. There is
one exceptional connection, indicated with a dotted line: In the Rossmann fold there is a
connection across 3 strands through a parallel helix. This figure is adapted from [24].

Figure 7, Issues Associated with the Multi-domain Nature of
Proteins

This schematic highlights that fact that a given ORF can contain many structural features.
TOP, Various regions of a representative ORF are annotated with different structural
features, such as transmembrane helices or homology to known structure. Sometimes
these features overlap, as is often the case for TM-helices and low-complexity regions.
After "masking" the first four structural features (PDB matches, low-complexity regions,
TM-helices, and linkers), one is left with uncharacterized regions, which can be
characterized by a limited amount of structure prediction. BOTTOM shows that having
multiple domains introduces complexity in clustering sequences. Naively applied single-
linkage clustering will group together two sequences (i.e. 2 and 4) that have similarity to
different domains (B and C) in a third, intermediate sequence (3). TOP is adapted from
[24].

Figure 8, When will all Structures in Genome be Known?
This figure attempts to determine when all the structures will be known for the proteins in
a complete genome. The TOP panel shows how the fraction of amino acids characterized
in eight genomes increases each year with the addition of new structures to the PDB --
imagining that the complete sequences of the eight genomes were known a quarter
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century ago. A loose "back-of-the-envelope" trendline is fit to the increase in the last
decade. In the BOTTOM panel, this trendline is extrapolated to the point when all
structures in the genomes are known, which is rather pessimistically estimated to be
around 2050. Characterized regions are structural features, as shown Figure 7. They are
either PDB matches (as determined by the FASTA program), TM-helices (identified as
described in figure 9), low-complexity regions (identified using the SEG program [207,
208]), or linkers (short stretches of less than 50 residues linking two the previous
elements). Abbreviations for the genomes are in Table 1.

Figure 9, Transmembrane Folds in Microbial Genomes
This log-log graph shows the occurrence of membrane proteins with a given number of
transmembrane (TM) helices in each of the eight genomes. Abbreviations are defined in
Table 1. The occurrence drops off in a similar fashion in all eight genomes, according to
a Zipf-like law, and a fit to all eight is shown in the graph.  The transmembrane segments
were identified using the GES hydrophobicity scale [175]. Figure is adapted from [149].

Figure 10, Scale of the Data: Molecular Biology vs. Other
Disciplines

Schematic illustrates the scale of the fundamental data set in molecular biology, the table
of folds, in comparison to data sets in other disciplines. The table of folds is expected to
contain between 1000 and 10000 objects. This is larger in scale than the fundamental data
in physics and chemistry (~10 fundamental constants in physics and ~100 elements in
chemistry), about the same size as a fundamental data set in finance (the ~1000-10000
companies traded on the stock market), and smaller than data sets commonly used in
politics and demographics (>1,000,000 individuals in a state).
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Fig. 3
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Fig. 5
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Fig. 7

1 A

2 A

3

4

B

B

B

C

C

 

Structurally Uncharacterized (186)

1 4 3 3 2 5 6 1 4 2 4

1 PDB Match (152) 3 TM helix (30) 5 Coiled-Coil

2 Low Complexity Region (116) 4 Linker Region (5) 6 All-alpha or All-beta Region



41

Fig. 8
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Fig. 9
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